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Abstract

As a sequel to our previous paper on extending the Fast Multipole Method (FMM) for charges inside a dielectric sphere
[J. Comput. Phys. 223 (2007) 846–864], this paper further extends the FMM to the electrostatic calculation for charges
inside a dielectric sphere immersed in an ionic solvent, a scenery with more relevance in biological applications. The key
findings include two fourth-order multiple discrete image approximations in terms of u = ka to the reaction field induced
by the ionic solvent, provided that u = ka < 1 where k is the inverse Debye screening length of the ionic solvent and a is the
radius of the dielectric sphere. A 10�4 relative accuracy in the reaction field of a source charge within the sphere can be
achieved with only 3–4 point image charges. Together with the image charges, the FMM can be used to speed up the cal-
culation of electrostatic interactions of charges in a dielectric sphere immersed in an ionic solvent.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Solvent environment is well-known to provide a crucial contribution to the structure, dynamics and func-
tion of biological macromolecules. When modelling biological systems numerically, it has been a challenge,
however, to account for this environment in a manner that is computationally efficient and physically accu-
rate at the same time. Explicit representation of solvent molecules [1–3] offers a detailed and accurate
description of a biological macromolecule, yet the large number of atoms needed limits the size of the sim-
ulated system. Alternatively, implicit solvent models [4,5] reduce the solute–solvent interactions to their
mean-field characteristics, expressed as a function of the solute configuration alone, and thus yield significant
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computational savings. However, these implicit models also have fundamental limitations as the important
atomic interaction at the solute–solvent interfaces is ignored. In order to take advantage of the efficiency of
the implicit solvent models while also to account for ionic strength effect in the proximity of the solute,
hybrid explicit/implicit solvent models [6–8] have emerged as promising tools for biomolecular simulations.
For example, a popular hybrid approach, the solvent shell method [9–12], typically employs explicit solvent
only for the first few solvation shells of the solute, with a surrounding dielectric continuum to model bulk
effects beyond the shells.

This paper mainly addresses the fast and accurate calculation of electrostatic interactions in the hybrid sol-
vent models with the spherical geometry, using a reaction field based approach. The spherical geometry has
often been used because the reaction field of a spherical dielectric can be solved analytically, although this
treatment may be inefficient for non-spherical solutes such as certain globular proteins and other elongated
biopolymers like actin and DNA. For solutes of irregular shapes, using a non-spherical geometry to incorpo-
rate only a few layers of water adjacent to the solutes would make the simulated system much smaller, but how
to efficiently obtain an accurate reaction field for such shapes remains a challenge. In particular, to employ
solvation shells with irregular shapes, the Poisson’s equation needs to be solved numerically at every simula-
tion time step, which can become more computationally intensive than standard explicit solvent simulations
(depending on the system size). Moreover, the proposed image approximations could be used together with
other reaction field based methods. For instance, in the setting of periodic boundary conditions [13–15] to
reduce artificial surface effect intrinsic to hybrid solvent models, a possible strategy is to place a different spher-
ical cavity centered at each atom or group of atoms in the periodic box, or alternatively, to place a large spher-
ical cavity to enclose the solute and a different spherical cavity centered at each atom outside this spherical
cavity but within the periodic box [13,15].

For a pure water solvent, namely, with no ions present in the solvent, a variety of approaches exist for cal-
culating the reaction field for charges inside a spherical cavity, including Kirkwood’s classical series expansion
[16], Friedman’s image approximation [17] and Abagyan’s modified image approximation (MIMEL) [18]. All
these image approximation methods use just one image charge to represent the reaction field with limited accu-
racy. Recently, a high-order accurate image approximation using multiple image charges has been proposed
[19], in which the resulting image charges can be incorporated into a fast multipole method (FMM) very
straightforwardly to speed up the calculation of electrostatic interactions of charges inside a dielectric sphere.

In this paper, we shall focus on the ionic effect of an ionic solvent when the mobile ion concentration is
given by the Debye–Hückel theory. For a solvent of low ionic strength the linearized Poisson–Boltzmann
equation [20–24] can be used to model the potential field in the solvent. In the case of a spherical cavity, ana-
lytical solution of the linearized Poisson–Boltzmann equation goes back to the work published by Kirkwood
[16,25]. Utilizing Kirkwood’s basic idea, Alper and Levy proposed a so-called generalized reaction field
method for molecular dynamics simulations of liquid water [26]. Although they introduced one or two ions
in the simulation, they did not include ionic strength effects in the reaction field.

Recently, in [27] we have developed a first- and a second-order image approximations (in terms of
u = ka < 1) to an ionic solvent induced reaction field, where k is the inverse Debye screening length and a

is the radius of the spherical cavity. It is found that the resulting image approximations to the reaction field
are similar to those obtained for a non-ionic, pure water solvent except for a couple of simple, ionic strength
dependent correction potentials. In this paper, we will follow the same methodology [27] to develop fourth-
order image approximations (in terms of u = ka < 1) to the reaction field induced by the ionic solvent for a
charge inside a dielectric sphere. Moreover, we will discuss how the image approximations with the correction
potential terms can be incorporated into existing fast methods for many-body problems such as the FMM to
speed up the calculation of the electrostatic interactions for charges inside a dielectric sphere immersed in an
ionic solvent.

The structure of the paper is as follows. In Section 2, we review the series solution to the ionic solvent
induced reaction field due to a point charge inside a dielectric sphere. In Section 3, we present two fourth-order
image approximations to this reaction field by a point charge at the conventional Kelvin image point and two
line charges that extend along the radial direction from the Kelvin image point to infinity. Section 4 describes
the general procedure to discretize the image line charges by discrete point charges, resulting in multiple dis-
crete image approximations to the reaction field, while Section 5 describes how to apply such multiple discrete
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image approximations into the FMM for an O(N) calculation of electrostatic interactions of charges inside the
dielectric sphere. Numerical results are then given in Section 6 to validate the convergence properties of the
image approximations as well as the efficiency of the combination of the FMM and the high-order image
approximations. Finally, a conclusion is given in Section 7.

2. Ionic solvent induced reaction field for a point charge

By the principle of linear superposition, we only need to consider the reaction field due to a single source
charge q inside a spherical cavity centered at the origin. Without loss of generality, let us consider a dielectric
sphere of radius a immersed in an ionic solvent. The sphere has a dielectric constant �i, and the surrounding
ionic solvent is represented as a homogeneous dielectric continuum of a dielectric constant �o. The point
charge q is located on the x-axis inside the sphere at a distance rS < a from the center of the sphere, as shown
in Fig. 1.

It is well-known that the total electrostatic potential U(r) at a point r inside the sphere is given by the solu-
tion to the Poisson’s equation
r � ð�irUðrÞÞ ¼ �4pqdðjr� rsjÞ; ð1Þ

where d(r) is the Dirac delta function. Moreover, this potential can be expressed as U(r) = US (r) + URF(r),
where US(r) is the Coulomb potential due to the source charge q alone, and URF(r) is the reaction potential
due to the polarization of the outside dielectric medium.

Outside the sphere, on the other hand, by assuming that the mobile ion concentration in the ionic solvent is
given by the Debye–Hückel theory, namely, the mobile charges follow a Boltzmann distribution in the mean-
field approximation, for a solvent of low ionic strength, the linearized Poisson–Boltzmann equation [23,24]
r2UðrÞ � k2UðrÞ ¼ 0 ð2Þ

can be used to approximate the screened Coulomb potential in the solution. Here, k is the inverse Debye
screening length defined by
k2 ¼ 8pNAe2qA

1000�okBT
cs; ð3Þ
where NA is Avogadro’s number, qA is the solvent density, e is the protonic charge (4.803 · 10�10 esu), kB is
the Boltzmann constant, T is the absolute temperature and cs is the ionic concentration measured in molar
units. From (3), we see that the inverse Debye screening length k is proportional to the square root of the ionic
concentration cs. In particular, for 1:1 electrolytes (monovalent:monovalent salts like NaCl),
k � 0:33
ffiffiffiffi
cs

p
Å
�1 ð4Þ
at room temperature (25�), with �o = 78.5 and Å = 10�10 m [28].
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Fig. 1. A point charge and a dielectric sphere immersed in an ionic solvent.
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Using the classical electrostatic theory, the reaction field of the spherical dielectric can be solved analytically
[27]. More precisely, with respect to a spherical coordinate system (r,h,/) with its origin at the center of the
sphere (the pole is denoted by the x-axis in this paper), due to the azimuthal symmetry, the reaction field at an
observation point r = (r,h,/) inside the sphere is
URFðrÞ ¼
X1
n¼0

AnrnP nðcos hÞ; ð5Þ
where Pn(x) are the Legendre polynomials and An are the expansion coefficients given by
An ¼
q
�ia

1

rn
K

�iðnþ 1ÞknðuÞ þ �ouk0nðuÞ
�inknðuÞ � �ouk0nðuÞ

; n P 0; ð6Þ
where u = ka, rK = a2/rS with rK = (rK,0,0) denoting the conventional Kelvin image point and kn(r) are the
modified spherical Hankel functions defined as [29,30]
knðrÞ ¼
p
2r

e�r
Xn

k¼0

ðnþ kÞ!
k!ðn� kÞ!

1

ð2rÞk
; n P 0: ð7Þ
In particular, the first three modified spherical Hankel functions are
k0ðrÞ ¼
p
2r

e�r;

k1ðrÞ ¼
p
2r

e�r 1þ 1

r

� �
;

k2ðrÞ ¼
p
2r

e�r 1þ 3

r
þ 3

r2

� �
:

On the other hand, the potential outside the sphere is
UðrÞ ¼
X1
n¼0

BnknðkrÞP nðcos hÞ; ð8Þ
where Bn are the expansion coefficients given by
Bn ¼
q
�ia

rS

a

� �n �ið2nþ 1Þ
�inknðuÞ � �ouk0nðuÞ

: ð9Þ
It has been shown in [27] that, when the ionic strength of the solvent, or equivalently the inverse Debye screen-
ing length k, approaches zero, the above results can be identified with the corresponding results for the case of
a dielectric sphere immersed in a pure water solvent [19].

3. Image line charge approximations to the reaction field

Let us now turn our attention to the problem of finding image charges outside the spherical region which
should represent the reaction potential inside the sphere. For a pure water solvent, such image charges
include a point charge at the conventional Kelvin image point and a continuous line charge extending along
the radial direction from this Kelvin image point to infinity [31–33]. For an ionic solvent, as mentioned ear-
lier, by assuming that the ionic strength of the solvent is low enough so that the product of the inverse
Debye screening length and the radius of the spherical cavity is less than one (u = ka < 1), we have devel-
oped a first- and a second-order image approximations (in terms of u = ka) to the ionic solvent induced
reaction field [27]. Both approximations employ the same image point and line charges as those obtained
for the pure water solvent, while the ionic strength effect is included in a couple of additional correction
potentials.

It should be pointed out that the assumption of u = ka < 1 is physically justifiable. A general belief is that,
the Debye–Hückel theory and thus the linearization of the Poisson–Boltzmann equation hold only for the case
of dilute or moderate solutions (e.g. molar concentrations cs < 1 mM), but fail for cases of higher ionic con-
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centrations (in particular when 1/k reaches the atomic scale). The monograph by Fowler and Guggenheim [34]
contains detailed discussions on when the Debye–Hückel theory applies. It also briefly mentions theories that
were developed to work at higher ionic concentrations.

The condition that u = ka < 1 implies a maximum radius will be set for a specified inverse Debye screening
length. Conversely, a fixed radius will limit the ionic strength for which the image approximations are valid.
For dilute solutions, u = ka < 1 is true even for a very large simulated system. For 1 mM NaCl salt,
k � 0.01 Å�1, we can use a < 100 Å, which is more than enough for a relatively large protein. And for
10 mM NaCl salt, k � 0.03 Å�1, we can use a < 30 Å. On the other hand, if a large system with a = 50 Å needs
to be simulated, then the maximum ionic concentration that satisfies u = ka < 1 is about 4 mM. Since phys-
iological salt concentrations are normally in the mM range and lower, u = ka < 1 is therefore a reasonable
assumption for most real biological systems. Fig. 2 shows the scale of u = ka for physiological salts with
cs < 10 mM for four different simulated systems with a = 10 Å, 20 Å, 30 Å and 50 Å, respectively.

3.1. Previous results: first- and second-order image approximations

Applying the asymptotic expansion of the modified spherical Hankel function for small r
knðrÞ ¼ p
ð2nÞ!

n!

1

ð2rÞnþ1
þO

1

rn

� �
; n P 0; ð10Þ
the first-order image approximation to the ionic solvent induced reaction field can be obtained as follows [27]:
URFðrÞ ¼
qK

�ijr� rKj
þ
Z 1

rK

qL0ðxÞ
�ijr� xj dxþOðuÞ; ð11Þ
with the image point charge qK and the image line charge qL0(x) defined by
qK ¼ c
a
rS

q; qL0ðxÞ ¼
d0q
a

x
rK

� ��r0

; rK 6 x;
respectively, where
c ¼ �i � �o

�i þ �o

; r0 ¼
�o

�i þ �o

; d0 ¼
�ið�i � �oÞ
ð�i þ �oÞ2

:

Note that neither of the point charge qK and the line charge qL0(x) depends on the inverse Debye screening
length k, indicating that in essence the first-order image approximation to the ionic solvent induced reaction
field totally ignores the ionic strength effect in the reaction potential. Hence, more accurate image
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Fig. 2. Scale of u = ka for physiological salt concentrations.
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approximations have to be developed to account for the ionic strength effect. To this end, by noticing that
instead of the O(1/rn) truncation error as described in (10), in fact we have
knðrÞ ¼ p
ð2nÞ!

n!

1

ð2rÞnþ1
þO

1

rn�1

� �
; n P 1: ð12Þ
The first-order image approximation thus can be improved by simply including a constant, position-indepen-

dent correction potential, resulting in the following second-order image approximation to the ionic solvent in-
duced reaction field [27]:
URFðrÞ ¼
qK

�ijr� rKj
þ
Z 1

rK

qL0ðxÞ
�ijr� xj dxþ U0C1 þOðu2Þ; ð13Þ
with the constant, position-independent correction potential U0C1 defined by
U0C1 ¼
q
�ia

C0ðuÞ � c� d0

r0

� �
;

where
C0ðuÞ ¼
�i � ð1þ uÞ�o

ð1þ uÞ�o

: ð14Þ
Moreover, the accuracy of the second-order image approximation (13) can be further improved by including
another position-dependent correction potential, yielding the improved second-order image approximation [27]
URFðrÞ ¼
qK

�ijr� rKj
þ
Z 1

rK

qL0ðxÞ
�ijr� xj dxþ U0C1 þ U0C2ðrÞ þOðu2Þ; ð15Þ
with the position-dependent correction potential U0C2ðrÞ defined by
U0C2ðrÞ ¼
q
�ia

C1ðuÞ � c� d0

1þ r0

� �
r

rK

� �
cos h;
where
C1ðuÞ ¼
2ð1þ uÞ�i � ð2þ 2uþ u2Þ�o

ð1þ uÞ�i þ ð2þ 2uþ u2Þ�o

: ð16Þ
3.2. Fourth-order image approximations

To construct a fourth-order image approximation, first by using
e�r ¼ 1� r þ r2

2
� r3

6
þOðr4Þ;
and
 Xn

k¼0

ðnþ kÞ!
k!ðn� kÞ!

1

ð2rÞk
¼ ð2nÞ!

n!

1

ð2rÞn þ
ð2n� 1Þ!
ðn� 1Þ!

1

ð2rÞn�1
þ ð2n� 2Þ!

2ðn� 2Þ!
1

ð2rÞn�2
þ ð2n� 3Þ!

6ðn� 3Þ!
1

ð2rÞn�3

þO
1

rn�4

� �
; n P 3;
we get the expansion of the modified spherical Hankel function kn(r) in terms of 1/r for n P 3
knðrÞ ¼ p
ð2n� 2Þ!
ðn� 1Þ!

2ð2n� 1Þ
ð2rÞnþ1

� 1

4ð2rÞn�1

 !
þO

1

rn�3

� �
; n P 3: ð17Þ
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Next, after expanding k2(r) directly in terms of 1/r, it turns out that (17) is also true for n = 2. Therefore, we
have
knðrÞ ¼ p
ð2n� 2Þ!
ðn� 1Þ!

2ð2n� 1Þ
ð2rÞnþ1

� 1

4ð2rÞn�1

 !
þO

1

rn�3

� �
; n P 2: ð18Þ
Correspondingly, the derivative of the modified spherical Hankel function can be expanded for small r as
k0nðrÞ ¼ �p
ð2n� 2Þ!
ðn� 1Þ!

4ð2n� 1Þðnþ 1Þ
ð2rÞnþ2

� n� 1

2ð2rÞn

 !
þO

1

rn�2

� �
; n P 2:
Consequently, we obtain
knðrÞ
rk0nðrÞ

¼ � �ð2þ r2Þ þ 4n
ðr2 � 2Þ þ ð2� r2Þnþ 4n2

þOðr4Þ; n P 2:
Inserting this approximation into (6) leads to
An ¼
q
�ia

1

rn
K

a1 þ a2nþ a3n2

b1 þ b2nþ b3n2
þOðu4Þ; n P 2;
where we denote
a1 ¼ �ð�i þ �oÞu2 � 2ð�i � �oÞ; a2 ¼ ð�i � �oÞð2� u2Þ; a3 ¼ 4ð�i � �oÞ;
b1 ¼ ��oð2� u2Þ; b2 ¼ �ð�i þ �oÞu2 � 2ð�i � �oÞ; b3 ¼ 4ð�i þ �oÞ:
After some algebraic manipulation, the expansion coefficients An are found to be
An ¼
q
�ia

1

rn
K

cþ a1 þ a2n
b1 þ b2nþ n2

� �
þOðu4Þ; n P 2;
where
a1 ¼ c
a1

a3

� b1

b3

� �
; b1 ¼

b1

b3

;

a2 ¼ c
a2

a3

� b2

b3

� �
; b2 ¼

b2

b3

:

Note that b1 < 0 when 0 6 u < 1. Then, using partial fractions gives us
An ¼
q
�ia

1

rn
K

cþ d1

nþ r1

þ d2

n� r2

� �
þOðu4Þ; n P 2; ð19Þ
where
d1 ¼
a2r1 � a1

r1 þ r2

; r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � 4b1

q
þ b2

2
;

d2 ¼
a2r2 þ a1

r1 þ r2

; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � 4b1

q
� b2

2
:

Moreover, it can be shown easily that both 0 < r1 < 1 and 0 < r2 < 1. Furthermore, we can prove that 1/2 < r1

when �i < �o/5, and r2 < 1/2 when �i < �o (and r2 > 1/2 if �i > �o and r2 = 1/2 if �i = �o). Therefore, in hybrid
explicit/implicit solvent models for biomolecular simulations where the typical dielectric constants are 1–4 for
�i and 60–85 for �o, respectively, we always have 1/2 < r1 < 1 and 0 < r2 < 1/2.

On the other hand, for n 6 1, applying the exact expressions of k0(r) and k1(r), in fact we can arrive at
k0ðrÞ
rk00ðrÞ

¼ � 1

1þ r
;

k1ðrÞ
rk01ðrÞ

¼ � 1þ r
2þ 2r þ r2

;
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and accordingly,
A0 ¼ C0ðuÞ
q
�ia

; A1 ¼ C1ðuÞ
q
�ia

1

rK

;

with C0(u) and C1(u) being defined by (14) and (16), respectively.
Inserting now the approximation of An given by (19) into (5), the reaction field inside the sphere is taken as
URFðrÞ ¼ A0 þ A1r cos hþ S1 þ S2 þ S3 þOðu4Þ; ð20Þ
where the three series S1, S2 and S3 are defined as
S1 ¼
cq
�ia

X1
n¼2

r
rK

� �n

P nðcos hÞ;

S2 ¼
d1q
�ia

X1
n¼2

1

nþ r1

r
rK

� �n

P nðcos hÞ;

S3 ¼
d2q
�ia

X1
n¼2

1

n� r2

r
rK

� �n

P nðcos hÞ:
To find an image representation of the first series S1, we recall that the Coulomb potential US(r), the potential
at r due to a point charge at rS, can be expanded in terms of the Legendre polynomials of cosh as follows [35]:
USðrÞ ¼
q

�ijr� rSj
¼

q
�ir

P1
n¼0

rS

r

� �n
P nðcos hÞ; rS 6 r 6 a;

q
�irS

P1
n¼0

r
rS

� �n
P nðcos hÞ; 0 6 r 6 rS:

8>><
>>: ð21Þ
Note that the first series S1 can be written as
S1 ¼
cq
�irK

a
rS

X1
n¼0

r
rK

� �n

P nðcos hÞ � cq
�ia

1þ r
rK

cos h

� �
;

where the first part is exactly the expansion given by (21) for a point charge of magnitude qK outside the sphere
at the conventional Kelvin image point rK = (rK,0,0), namely,
S1 ¼
qK

�ijr� rKj
� cq
�ia

1þ r
rK

cos h

� �
: ð22Þ
Next, to find an image representation for the second series S2, we need the integral identity
1

nþ r
¼ rnþr

K

Z 1

rK

1

xnþrþ1
dx; ð23Þ
which is valid for all n P 0 when r > 0. Inserting (23) with r = r1 into S2 yields
S2 ¼
Z 1

rK

qL1ðxÞ
�ix

X1
n¼0

r
x

� �n
P nðcos hÞ

" #
dx� d1q

�ia
1

r1

þ 1

1þ r1

r
rK

cos h

� �
;

where
qL1ðxÞ ¼
d1q
a

x
rK

� ��r1

; rK 6 x: ð24Þ
Note that the integrand in the above integral again becomes the expansion given by (21) for a charge of mag-
nitude qL1(x) outside the sphere at the point x = (x, 0,0). Therefore, qL1(x) can be regarded as a continuous
line charge that extends along the radial direction from the classical Kelvin image point rK out to infinity.
Thus, the second series S2 becomes
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S2 ¼
Z 1

rK

qL1ðxÞ
�ijr� xj dx� d1q

�ia
1

r1

þ 1

1þ r1

r
rK

cos h

� �
: ð25Þ
Last, to find an image representation for the third series S3, we use a similar integral identity
1

n� r2

¼ rn�r2
K

Z 1

rK

1

xn�r2þ1
dx; ð26Þ
which is valid for all n P 1 as 0 < r2 < 1. Inserting this into S3 yields
S3 ¼
Z 1

rK

qL2ðxÞ
�i

X1
n¼0

1

x
r
x

� �n
P nðcos hÞ � 1

x
þ r

x2
cos h

� �" #
dx;
where
qL2ðxÞ ¼
d2q
a

x
rK

� �r2

; rK 6 x: ð27Þ
Then applying the identity (Expansion (21) with rS = x, q = 1, and �i = 1)
1

jr� xj ¼
X1
n¼0

1

x
r
x

� �n
P nðcos hÞ; r < x;
and noting that
Z 1

rK

qL2ðxÞ
�i

r
x2

cos hdx ¼ d2q
�iað1� r2Þ

r
rK

cos h;
we obtain
S3 ¼
Z 1

rK

qL2ðxÞ
�i

1

jr� xj �
1

x

� �
dx� d2q

�iað1� r2Þ
r

rK

cos h: ð28Þ
Likewise, qL2(x) can be regarded as a continuous line charge (in fact, dipole moment) extending along the ra-
dial direction from the classical Kelvin image point rK to infinity. Unlike qL1(x) whose magnitude decays to
zero faster than x�1/2, however, qL2(x) grows to infinity slower than x1/2 in terms of its magnitude. Fig. 3
shows the density distributions of the image line charges qL0(x), qL1(x) and qL2(x) for a source charge
q = �1 at rS = 0.8 on the x-axis in the case that �i = 2, �o = 80, a = 1, and k = 0.8.

Finally, after combining (22), (25) and (28), we obtain a fourth-order image approximation to the ionic sol-
vent induced reaction potential as follows:
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URFðrÞ ¼
qK

�ijr� rKj
þ
Z 1

rK

qL1ðxÞ
�ijr� xj dxþ

Z 1

rK

qL2ðxÞ
�i

1

jr� xj �
1

x

� �
dxþ UC1 þ UC2ðrÞ þOðu4Þ; ð29Þ
where UC1 is a constant, position-independent correction potential defined as
UC1 ¼
q
�ia

C0ðuÞ � c� d1

r1

� �
; ð30Þ
and on the other hand, UC2(r) is a position-dependent correction potential given by
UC2ðrÞ ¼
q
�ia

C1ðuÞ � c� d1

1þ r1

� d2

1� r2

� �
r

rK

cos h: ð31Þ
To further improve the accuracy of the fourth-order image approximation, we can choose to calculate the
third term in the series expansion (5) exactly. For n = 2, from the exact expression of k2(r), in fact we can ar-
rive at
k2ðrÞ
rk02ðrÞ

¼ � 3þ 3r þ r2

9þ 9r þ 4r2 þ r3
:

Substituting it into A2 defined in (6), we now obtain
A2 ¼ C2ðuÞ
q
�ia

1

r2
K

;

where
C2ðuÞ ¼
3ð3þ 3uþ u2Þ�i � ð9þ 9uþ 4u2 þ u3Þ�o

2ð3þ 3uþ u2Þ�i þ ð9þ 9uþ 4u2 þ u3Þ�o

: ð32Þ
Now instead of (20), we express the reaction field inside the sphere as
URFðrÞ ¼ A0 þ A1r cos hþ A2r2P 2ðcos hÞ þ
X1
n¼3

q
�ia

1

rn
K

cþ d1

nþ r1

þ d2

n� r2

� �
rnP nðcos hÞ þOðu4Þ: ð33Þ
Note that the only difference between (20) and (33) is the way to calculate the third term. For this reason, the
fourth-order image approximation defined by (29) can be improved by simply including a third correction po-
tential, resulting in an improved fourth-order image approximation as follows:
URFðrÞ ¼
qK

�ijr� rKj
þ
Z 1

rK

qL1ðxÞ
�ijr� xj dxþ

Z 1

rK

qL2ðxÞ
�i

1

jr� xj �
1

x

� �
dxþ UC1 þ UC2ðrÞ þ UC3ðrÞ

þOðu4Þ; ð34Þ
where the position-dependent correction potential UC3 (r) is defined as
UC3ðrÞ ¼
q
�ia

C2ðuÞ � c� d1

2þ r1

� d2

2� r2

� �
r

rK

� �2

P 2ðcos hÞ: ð35Þ
Here, P2(cosh) = (3cos2h � 1)/2.
As a special case, when u = ka = 0, one can show that r1 = r0 and d1 = d0 so qL1(x) = qL0(x), and d2 = 0 so

qL2(x) = 0. One can also verify that all three correction potentials become zero. This is not surprising since in
this case the image approximation given by (29) or (34) should reduce to the image approximation for the case
of a dielectric sphere immersed in a pure water solvent [19].

In addition, it should be mentioned that, although both correction potentials UC2(r) and UC3(r) are posi-
tion-dependent, as demonstrated in Section 5, all correction terms to the reaction potentials at all observation
points from all source charges still can be evaluated in O(N) operations. Here, N denotes the total number of
charges in the simulated system. This means that, in principle, we can include as many terms as needed in the
correction terms in order to get better/higher-order accuracy.
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4. Discretization of the image line charges

Now let us show how to approximate each image line charge introduced in the previous section by a set of
discrete image charges. The basic idea is to transform the underlying line integral for the potential for an
image line charge onto the finite interval [�1,1], and then apply appropriate Gauss or Gauss–Radau quadra-
ture related to specific Jacobi polynomials. Without losing any generality, let us consider
I ¼
Z 1

rK

f ðxÞ x
rK

� ��r

dx; ð36Þ
where r > 0.
First, by introducing the change of variables rK/x = ((1 � s)/2)s with s > 0, we have
I ¼ 2�srs
Z 1

�1

ð1� sÞahðs; sÞds; ð37Þ
where a = sr � 1 and
hðs; sÞ ¼ 2srK

ð1� sÞs f
2srK

1� sð Þs
� �

: ð38Þ
Next, we shall employ a numerical quadrature to approximate the integral in (37). Note that s = �1 corre-
sponds to the Kelvin image point x = rK. Also a > �1 because r > 0 and s > 0. Therefore, we can choose
either Gauss or Gauss–Radau quadrature based on Jacobi polynomials. More precisely, let sm, xm,
m = 1,2, . . . ,M, be the Jacobi–Gauss or Jacobi–Gauss–Radau points and weights on the interval [�1,1] with
a = sr � 1 and b = 0 (s1 = �1 if Jacobi–Gauss–Radau quadrature is used.) Both sm and xm can be obtained
with the program ORTHPOL [36]. Then, the numerical quadrature for approximating the integral in (37) is
I � 2�srs
XM

m¼1

xmhðsm; sÞ ¼ 2�srs
XM

m¼1

xmxmf ðxmÞ; ð39Þ
where for m = 1,2, . . . ,M,
xm ¼ rK
2

1� sm

� �s

: ð40Þ
The parameter s > 0 in the change of variables rK /x = ((1 � s)/2)s can be used as a parameter to control the
accuracy of numerical approximations. In particular, when s = 1/r we have a = 0, and in this case the quad-
rature given by (39) simply reduces to the usual Gauss or Gauss–Radau quadrature.

4.1. Discretization of qL1(x)

Note that
Z 1

rK

qL1ðxÞ
�ijr� xj dx ¼

Z 1

rK

d1q
�iajr� xj

x
rK

� ��r1

dx:
Recall that 0 < r1 < 1, and furthermore, when �i < �o/5, we have r1 > 1/2. Then using (39) with r = r1 leads to
Z 1

rK

qL1ðxÞ
�ijr� xj dx �

XM

m¼1

qL1
m

�ijr� xmj
; ð41Þ
where for m = 1,2, . . . ,M,
qL1
m ¼ 2�sr1sd1xm

xm

a
q: ð42Þ
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4.2. Discretization of qL2(x)

Note that
Z 1

rK

qL2ðxÞ
�i

1

jr� xj �
1

x

� �
dx ¼

Z 1

rK

d2q
�ia

1

jr� xj �
1

x

� �
x

rK

� �r2

dx: ð43Þ
Recall that 0 < r2 < 1/2 when �i < �o. First it should be mentioned that the integrand decays faster than x�3/2

so the integral converges, although the line charge qL2(x) itself grows to infinity as x increases.
To use (39), we reformulate the right-hand side of (43) as
Z 1

rK

d2q
�ia

1

jr� xj �
1

x

� �
x

rK

� �
x

rK

� ��ð1�r2Þ

dx:
Then applying (39) with r = (1 � r2) > 1/2, we get
Z 1

rK

qL2ðxÞ
�i

1

jr� xj �
1

x

� �
dx �

XM

m¼1

qL2
m

�ijr� xmj
�
XM

m¼1

qL2
m

�ixm
; ð44Þ
where for m = 1,2, . . . ,M,
qL2
m ¼ 2�sð1�r2Þsd2xm

xm

rK

� �
xm

a
q: ð45Þ
Note that the second summation in the right-hand side of (44) is position-independent. Adding it to the posi-
tion-independent correction potential UC1 leaves us with a modified constant, position-independent correction
potential
�UC1 ¼ UC1 �
XM

m¼1

qL2
m

�ixm
: ð46Þ
4.3. Discretization of qL1(x) and qL2(x) by charges at the same locations

The discrete image charges defined in (42) and (45) are at different locations even when the same s value is
used in the change of variables. For computational efficiency, particularly when the image approximations are
applied together with the FMM, one can choose to discretize qL1(x) and qL2(x) by point charges at the same
locations, thus potentially cutting the number of discrete image charges in half. More specifically, one can
choose a common parameter rc > 0 to rewrite the line charge qL1(x) as
qL1ðxÞ ¼
d1q
a

x
rK

� �rc�r1 x
rK

� ��rc

;

and, at the same time, the right-hand side of (43) as
Z 1

rK

d2q
�ia

1

jr� xj �
1

x

� �
x

rK

� �rcþr2 x
rK

� ��rc

dx:
Then using (39) with r = rc leads to
qL1
m ¼ 2�srcsd1xm

xm

rK

� �rc�r1 xm

a
q; ð47Þ
and
qL2
m ¼ 2�srcsd2xm

xm

rK

� �rcþr2 xm

a
q: ð48Þ
The parameter rc > 0 is tunable for optimal computational efficiency. For example, depending on the value of
u = ka, either of the two natural choices rc = r1 and rc = 1 � r2 could perform better than the other.
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In conclusion, in general we have the following fourth-order multiple discrete image approximations to the
reaction potential inside the sphere in terms of the potentials of 2M + 1 point charges (or M + 1 point charges

if a common parameter rc is utilized) and some correction potentials.

(a) A fourth-order multiple discrete image approximation:
URFðrÞ �
1

�i

qK

jr� rKj
þ
XM

m¼1

qL1
m

jr� xmj
þ
XM

m¼1

qL2
m

jr� x0mj

 !
þ �UC1 þ UC2ðrÞ; ð49Þ
(b) An improved fourth-order multiple discrete image approximation:
URFðrÞ �
1

�i

qK

jr� rKj
þ
XM

m¼1

qL1
m

jr� xmj
þ
XM

m¼1

qL2
m

jr� x0mj

 !
þ �UC1 þ UC2ðrÞ þ UC3ðrÞ: ð50Þ
5. Order N calculation of the image approximations

The main purpose for discrete image approximations to reaction fields is to apply existing fast methods for
many-body problems directly in calculating the electrostatic interactions among N charges inside the spherical
cavity in O(NlogN) or even O(N) operations. Such fast algorithms include the O(NlogN) hierarchical tree
code- [37,38] or fast Fourier transform (FFT)-based algorithms [39,40], and the asymptotically optimal
O(N) FMMs [41,42]. In particular, in this paper, we give a straightforward but far from optimal FMM-based
O(N) implementation of the discrete image approximations.

For convenience, let rF
i ¼ ðxF

i ; y
F
i ; z

F
i Þ i = 1,2, . . . ,N, be N observation points within the sphere, and

rS
j ¼ ðxS

j ; y
S
j ; z

S
j Þ j = 1,2, . . . ,N, be the locations of N source charges with charge strengths q1,q2, . . . ,qN. By

the principle of linear superposition, the reaction field at an observation point rF
i , in the case that the improved

fourth-order multiple discrete image approximation (50) is employed, becomes
URFðrF
i Þ �

1

�i

XN

j¼1

qK;j

jrF
i � rK;jj

þ
XM

m¼1

qL1
m;j

jrF
i � xm;jj

þ
XM

m¼1

qL2
m;j

jrF
i � x0m;jj

 !
þ
XN

j¼1

�UC1;j þ
XN

j¼1

UC2;jðrF
i Þ þ

XN

j¼1

UC3;jðrF
i Þ;

ð51Þ
where a quantity with a second subscript j designates the corresponding quantity associated with the source
charge rS

j , such as
qK;j ¼ c
a
rS

j

qj; rK;j ¼
a2

rS
j

; xm;j ¼ rK;j
2

1� sm

� �s

:

5.1. Order N calculation of the correction potentials

Obviously, the constant, position-independent correction potential
XN

j¼1

�UC1;j ¼
XN

j¼1

qj

�ia
C0ðuÞ � c� d1

r1

� �
�
XM

m¼1

qL2
m;j

�ix0m;j

" #
can be evaluated in O(N) operations. The evaluation of the second correction potential in O(N) operations,
however, needs special manipulation due to its position-dependence. Expressing the cosine of the angle h be-
tween rF

i and rS
j in terms of their rectangular coordinates, we get
XN

j¼1

UC2;jðrF
i Þ ¼

XN

j¼1

c1qjr
F
i

rK;j

xF
i xS

j þ yF
i yS

j þ zF
i zS

j

rF
i rS

j

 !
; ð52Þ
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where
c1 ¼
1

�ia
C1ðuÞ � c� d1

1þ r1

� d2

1� r2

� �
:

Rearranging terms in (52) leads to
XN

j¼1

UC2;jðrF
i Þ ¼ d1xF

i þ d2yF
i þ d3zF

i ;
where
d1 ¼
c1

a2

XN

j¼1

qjx
S
j ; d2 ¼

c1

a2

XN

j¼1

qjy
S
j ; d3 ¼

c1

a2

XN

j¼1

qjz
S
j :
Now it becomes clear that the second correction potential can be evaluated in O(N) operations. Analogously,
the third correction potential can also be evaluated in O(N) operations. In fact, we have
XN

j¼1

UC3;jðrF
i Þ ¼ e1ðxF

i Þ
2 þ e2ðyF

i Þ
2 þ e3ðzF

i Þ
2 þ e4xF

i yF
i þ e5xF

i zF
i þ e6yF

i zF
i þ e7ðrF

i Þ
2
;

where
e1 ¼
3c2

2a4

XN

j¼1

qjðxS
j Þ

2
; e2 ¼

3c2

2a4

XN

j¼1

qjðyS
j Þ

2
; e3 ¼

3c2

2a4

XN

j¼1

qjðzS
j Þ

2
;

e4 ¼
3c2

a4

XN

j¼1

qjx
S
j yS

j ; e5 ¼
3c2

a4

XN

j¼1

qjx
S
j zS

j ; e6 ¼
3c2

a4

XN

j¼1

qjy
S
j zS

j ;

e7 ¼ �
c2

2a4

XN

j¼1

qjðrS
j Þ

2
;

and
c2 ¼
1

�ia
C2ðuÞ � c� d1

2þ r1

� d2

2� r2

� �
:

5.2. Order N calculation of the potentials of the image charges

The asymptotically optimal O(N) FMMs [41–44] are known to be very efficient in the evaluation of pairwise
interactions in large ensembles of particles, such as expressions of the form
UðriÞ ¼
XN

j¼1;j6¼i

qj

jri � rjj
; i ¼ 1; 2; . . . ;N
for the electrostatic potential, where r1,r2, . . . , rN are points in R3 and q1,q2, . . . ,qN are the corresponding
charge strengths. The large prefactor in O(N), however, makes the original FMM [41,42] less competitive
(in three dimensions) for problems of current interest when compared to the tree code- or FFT-based methods.
Later, a new version of FMM with an optimized prefactor was introduced for the Laplace equation [43]. Com-
pared to the original FMM, a plane wave expansion-based diagonal translation operator is introduced, which
dramatically reduces the prefactor in O(N) and thus makes the new version of FMM extremely efficient. For
instance, in three dimensions a break-even point of N � 500 for 3-digit accuracy has been numerically ob-
served for the new version of FMM [43]. Further, an adaptive version of the new version of FMM for the
Laplace equation in three dimensions is introduced [44] for applications with highly non-uniform charge dis-
tributions. The adaptive version still scales linearly in time and breaks even with the direct calculation at
N � 750 for 3-digit precision, N � 1500 for 6-digit precision, and N � 2500 for 9-digit precision, respectively
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[44]. However, the new version of FMM is more complicated than the original one in both programming and
theory.

Recently, the new version of FMM was extended for screened Coulomb interactions in three dimensions
[45]. By using this new version of FMM for the screened Coulomb interactions and a boundary integral equa-
tion approach to discretize the linearized Poisson–Boltzmann equation, an order N algorithm for the calcula-
tion of electrostatic interactions in biomolecular systems is developed [46]. Preliminary numerical experiments
show that the overall break-even point becomes N � 400 for 3-digit accuracy, and N � 600 with 6-digit
accuracy.

Using any FMM with O(N) computational complexity, the calculation of the potentials of the discrete
image charges, namely,
1

�i

XN

j¼1

qK;j

jrF
i � rK;jj

þ
XM

m¼1

qL1
m;j

jrF
i � xm;jj

þ
XM

m¼1

qL2
m;j

jrF
i � x0m;jj

 !
for all observation points can be evaluated in O(N) operations in a straightforward way. In the simplest imple-
mentation, such evaluation can be carried out with a single FMM run by including into the FMM cube all
point image charges qK;j at the conventional Kelvin image points rK;j, all discrete image charges qL1

m;j at xm,j,
and all discrete image charges qL2

m;j at x0m;j, where all charges are taken as acting in a homogeneous medium
of a dielectric constant �i. In the case that the total potential is to be calculated, all original source charges
are also included in the FMM cube.

In general, xm and x0m are different. To reduce the size of the FMM cube to achieve better computational
efficiency, as described in Section 4.3, one can choose to approximate both line charges qL1(x) and qL2(x) by
discrete image charges at the same locations. This way the discrete point charges for the two image line charges
can be combined together, significantly reducing the number of charges in the FMM cube by a percentage of
M/(1 + 2M).

Remark 1. [Local expansions of farther image charges] The introduced discrete image charges outside the
sphere will result in a large computational domain and the image charges are highly non-uniformly
distributed, particularly because the image charges of those source charges close to the center of the sphere are
far away from the spherical boundary. Therefore, direct application of the FMM by including all image
charges in this large computational box is not efficient. Instead, a simple but more efficient way would be to
calculate the local expansion due to the far field image charges directly inside the sphere. This way, we achieve
not only a smaller FMM box but also a smaller number of total charges in the box.

More specifically, in practice we could introduce a bigger cut-off sphere of radius ja centered at the origin
with j > 1. The calculation of the potentials inside the original dielectric sphere due to those image charges
inside this cut-off sphere is still carried out by the chosen fast method. For all image charges outside this cut-
off sphere at (ql,al,bl),l = 1,2, . . . ,L, with charge strengths q̂l; l ¼ 1; 2; . . . ; qL, the calculation of the potential at
r = (r,h,/) inside the dielectric sphere generated by these image charges can be described by a local expansion
UðrÞ �
Xp

j¼0

Xj

k¼�j

Lk
j � Y k

j ðh;/Þ � rj; ð53Þ
where Y k
j ðh;/Þ are the spherical harmonics, and Lk

j are the local expansion coefficients given by
Lk
j ¼

XL

l¼1

q̂l �
Y �k

j ðal; blÞ
qjþ1

l

: ð54Þ
Furthermore, for any p P 1,
UðrÞ �
Xp

j¼0

Xj

k¼�j

Lk
j � Y k

j ðh;/Þ � rj

					
					 6

PL
l¼1jq̂lj

ja� r

 !
r
ja

� �pþ1

: ð55Þ
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6. Numerical results

For demonstration purpose, let us consider a unit dielectric sphere. The dielectric constants of the sphere
and its surrounding medium are assumed to be �i = 2 (normally 1, 2 or 4) and �o = 80 (the dielectric constant
of water), respectively. Unless otherwise specified, the results obtained by the direct series expansion with 400
terms are treated as the exact reaction fields to calculate the errors of the fourth-order image approximations.

6.1. Accuracy vs the ionic strength

Let us begin by verifying the convergence properties of the proposed image approximations. To this end, let
us consider a single point charge located on the x-axis inside the sphere at a distance rS = 0.5 from the center
of the sphere. Different r values are used to approximate the underlying image line charges, but for simplicity,
we always choose s = 1/r and M = 30 so that the same Gauss quadrature points and weights sm and xm are
involved. For each selected value of u = ka, we calculate the relative error of the image approximations in the
reaction field, respectively, at 10,000 observation points uniformly distributed (under the polar coordinates)
within the unit disk that contains the x-axis. The maximum relative error iEi at the 10,000 observation points
for various u values and the corresponding order of convergence are shown in Table 1. For sake of compar-
ison, the results obtained using the first- and the second-order image approximations are also included. As can
be observed, the results clearly demonstrate the O(u4) convergence property of the fourth-order image
approximations.

6.2. Accuracy vs the source location

From now on, we shall confine ourselves to the improved fourth-order image approximation. Let us first
investigate the dependence of its accuracy on the source location. To this end, in this test the inverse Debye
screening length is set as k = 0.5, and the Gauss quadrature with M = 30 is employed to approximate the
underlying image line charges. For each selected source position, we calculate the relative error of the
improved fourth-order image approximation in the reaction field, respectively, at 21 observation points
equally spaced on the x-axis, from �1 to 1. The results are displayed in Fig. 4. As can be seen, the approx-
imation error increases as the source charge moves to the spherical boundary while the observation point is
fixed, or similarly as the observation point moves to the spherical boundary while the source location is fixed.
In addition, for all cases where rS 6 0.95, the relative error in the reaction potential is less than 10�4. It should
be pointed out that, 400 terms in the series expansion could be insufficient to get accurate enough ‘‘exact reac-
tion fields’’ at those observation points close to the spherical boundary, which explains the abnormal error
behaviors near the spherical boundary.

6.3. Direct series expansion vs the improved fourth-order image approximation

In the case that the source charge is close to the spherical boundary, the Kelvin image point rK is close to
the boundary as well. Therefore, when calculating the reaction field at an observation point also close to the
spherical boundary, the convergence by the direct series expansion
Table 1
Convergence properties of the proposed image approximations

u First-order Second-order Fourth-order Improved fourth-order

iEi Order iEi Order iEi Order iEi Order

0.8 1.33E�2 3.45E�3 1.92E�4 2.13E�5
0.4 9.54E�3 0.48 1.29E�3 1.42 1.54E�5 3.64 1.42E�6 3.91
0.2 5.94E�3 0.68 4.02E�4 1.69 1.10E�6 3.80 9.14E�8 3.96
0.1 3.35E�3 0.82 1.12E�4 1.84 7.51E�8 3.88 6.03E�9 3.92
0.05 1.79E�3 0.91 2.97E�5 1.92 6.00E�9 3.64 4.97E�9
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Fig. 4. The relative errors of the improved fourth-order image approximation in the reaction field at 21 observation points equally spaced
on the x-axis, from �1 to 1, for six different source locations.
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shall be slow due to r/rK � 1, requiring a great number of terms to achieve high accuracy in the reaction field.
To compare the method of direct series expansion and the improved fourth-order multiple discrete image

approximation, in this test the inverse Debye screening length is again fixed at k = 0.5, while the Gauss quad-
rature with M = 3 and a common parameter rc = r1 is used to discretize the two line charges. Three different
source locations with rS = 0.8, 0.9 and 0.95 are tested, respectively. For each selected source location, we
approximate the reaction fields at the same 10,000 observation points as mentioned in Section 6.1 by the direct
series expansion with various numbers of terms, compare the results to the exact ones obtained by the direct
series expansion with 400 terms, calculate and plot in Fig. 5 the maximum relative errors. As indicated, more
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The maximum relative errors of the method of direct series expansion in the reaction field at 10,000 observation points within the
for three different source locations, where NExp denotes the number of terms included in the expansion.
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than 30, 65 and 130 terms have to be included for the approximation error to be less than 10�3 for the cases of
rS = 0.8, 0.9 and 0.95, respectively. On the other hand, the corresponding errors of the improved fourth-order
multiple discrete image approximation with a total of 4 point image charges (including the image charge at the

Kelvin image point) are 6.50 · 10�4, 7.67 · 10�4 and 8.28 · 10�4, respectively, all less than 10�3 already! There-
fore, to calculate reaction fields at points close to the spherical boundary due to source charges also close to
the boundary, the improved fourth-order image approximation is clearly much more efficient than the method
of direct series expansion.
6.4. Accuracy vs the number of discrete image charges

One natural concern with the proposed multiple discrete image approximations is the final number of dis-
crete image charges required to achieve certain order of degree of accuracy. For a desired accuracy, this num-
ber depends on the locations of both the source charge and the observation point. It should be small if
compared to the number of terms needed to achieve the same order of degree of accuracy in the direct series
expansion to make the image approximations useful in the practice.

In this test, the source location is fixed at rS = 0.95, while the Gauss quadrature with a common parameter
rc = r1 is used again to discretize the image line charges. For each selected value of u = ka ranging from 0.05
to 0.9, we approximate the reaction fields at the same 10,000 points within the sphere by the improved fourth-
order image approximation with various numbers of discrete image charges. The maximum relative errors are
plotted in Fig. 6. Once again, for sake of comparison, the corresponding error analysis results for the first-, the
second-, and the original fourth-order image approximations are also included. As can be seen, for this par-
ticular choice of the parameter rc, three to four image charges including the image point charge at the Kelvin

image point (M = 2 or 3) are sufficient for the improved fourth-order multiple discrete image approximation

to achieve a 10�4 relative accuracy.
6.5. Computational complexity of FMM-accelerated image approximations

To investigate the computational complexity of the image approximations in conjunction with the FMM,
the improved fourth-order image approximation described in Section 5 has been implemented simply by using
the free software FastLap, a general FMM-accelerated solver for Laplace problems [47]. We assume that the
observation points are distributed randomly but uniformly inside the whole sphere. The experiments are car-
ried out on a Dell OptiPlex GX280 workstation with a CPU clock rate of 3 GHz and a memory of 2GB.

In Table 2, timing results of the FMM calculation of the reaction field are reported and compared to those
obtained without the FMM acceleration. The expansion order and the partitioning level in the FMM calcu-
lation are set to be 2 and 9, respectively. The Gauss quadrature with M = 2 and a common parameter rc = r1

is used to construct discrete image charges, so for each source charge, in total there are three discrete image
charges. Also, u = ka = 0.5. As can be seen, the timing scales as O(N2) without using the FMM, but linearly
with the FMM. Note that in Table 2, NP denotes the number of observation points, and NC the number of
total discrete image charges included in the FMM cube, respectively.

Remark 2. As shown in Table 2, although the current implementation of the image approximations using
the original FMM-based FastLap scales linearly in time, it breaks even at NC > 30,000, which appears to be
disappointing. One reason is that the original FMM, although asymptotically optimal O(N), has a very
large prefactor in O(N). Another reason is that, although the original source charges are uniformly
distributed inside the dielectric sphere, the distribution of the image charges are highly non-uniform outside
the sphere, a case that FastLap is not designed for. Therefore, we believe much better computational
efficiency such as a much smaller break-even point can be achieved if we (1) calculate the local expansion
due to the far field image charges directly inside the dielectric sphere, as suggested in Remark 1, and (2) use
the adaptive version of the new version of FMM [44] or even just the pre-corrected FFT [40] to calculate the
potential due to the near field image charges. As a matter of fact, implementation of the two proposed
techniques is under the way, and any significant progresses in this direction will be reported in future
publications.
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Fig. 6. Accuracy of the image approximations to the ionic solvent induced reaction field due to a source charge inside the unit sphere at
distance rS = 0.95 from the center. The total number of discrete image charges is M + 1.
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Table 2
CPU time in seconds

NP NC With FMM No FMM

5000 15,000 11.6 2.1
10,000 30,000 13.2 8.5
20,000 60,000 14.5 34.5
40,000 120,000 20.4 138.4
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7. Conclusions

In this paper, we have presented two fourth-order discrete image approximations to the reaction field due to
a point charge inside a dielectric sphere immersed in an ionic solvent for small values of u = ka (k - the inverse
Debye screening length of the ionic solvent, a - the radius of the dielectric sphere). Numerical results have
demonstrated that only three to four discrete image charges are needed for the improved fourth-order image
approximation to achieve a 10�4 relative accuracy in the reaction field. Furthermore, using the FMM, the
image approximations presented in this paper require only O(N) work for calculating electrostatic interactions
for N source charges in a dielectric sphere immersed in an ionic solvent.
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